Session 3: (Chair: Hristijan Gjoreski)
Activity Recognition: Translation Across Sensor Modalities Using Deep Learning
Tsuyoshi Okita:Kyushu Institute of Technology; Sozo Inoue:Kyushu Institute of Technology;
A case study for human gestures recognition from poorly annotated data
Mathias Ciliberto:University of Sussex; Lin Wang:University of Sussex; Daniel Roggen:University of Sussex; Ruediger Zillmer:Unilever R&D;
SHL Challenge: Introduction
Hristijan Gjoreski: Ss. Cyril and Methodius University, Macedonia, & University of Sussex, UK
SHL Challenge: Summary & Baseline evaluation
Lin Wang, el al., Summary of the Sussex-Huawei Locomotion-Transportation Recognition Challenge. Proc. HASCA2018.
SHL Team 1
SHL Challenge: Posters
J. H. Choi, et al., Confidence-based deep multimodal fusion for activity recognition. Proc. HASCA2018.
P. Widhalm, et al., Top in the lab, flop in the field? Evaluation of a sensor-based travel activity classifier with the SHL dataset. Proc. HASCA2018.
M. Gjoreski, et al., Applying multiple knowledge to Sussex-Huawei locomotion challenge. Proc. HASCA2018.
A. D. Antar, et al., A comparative approach to classification of locomotion and transportation modes using smartphone sensor data. Proc. HASCA2018.
A Akbari, et al., Hierarchical signal segmentation and classification for accurate activity recognition. Proc. HASCA2018.
H. Matsuyama, et al., Short segment random forest with post processing using label constraint for SHL challenge. Proc. HASCA2018.
Y. Nakamura, et al., Multi-stage activity inference for locomotion and transportation analytics of mobile users. Proc. HASCA2018.
Y. Yuki, et al., Activity Recognition using Dual-ConvLSTM Extracting Local and Global Features for SHL Challenge. Proc. HASCA2018.
J. Wu, et al., A decision level fusion and signal analysis technique for activity segmentation and recognition on smart phones. Proc. HASCA2018.
V. Janko, et al., A new frontier for activity recognition - the Sussex-Huawei locomotion challenge. Proc. HASCA2018.
S. S. Saha, et al., Supervised and semi-supervised classifiers for locomotion analysis. Proc. HASCA2018.
A. Osmani, et al., Hybrid and convolutional neural networks for locomotion recognition. Proc. HASCA2018.
J. V. Jeyakumar, et al., Deep convolutional bidirectional LSTM based transportation mode recognition. Proc. HASCA2018.
T. B. Zahid, et al., A fast resource efficient method for human action recognition. Proc. HASCA2018.
S. Li, et al., Smartphone-sensors based activity recognition using IndRNN. Proc. HASCA2018.
K. Akamine, et al., SHL recognition challenge: Team TK-2 - combining results of multisize instances. Proc. HASCA2018.
M. Sloma, et al., Activity recognition by classification with time stabilization for the Sussex-Huawei locomotion challenge. Proc. HASCA2018.
L. Wang, et al., Benchmarking the SHL Recognition Challenge with Classical and Deep-Learning Pipelines.
|